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Abstract

In the Sun, both large-scale (global) and small-scale (local) dynamos are expected to operate at the same time and location, we check the hysteresis behavior in a numerical model in which both large- and small-scale dynamos are excited. For
this, we use the Pencil code and set up an a2 dynamo model with uniform shear and helically forced turbulence. We have performed a set of simulations at different relative helicity to explore the generation of large-scale oscillatory fields in
the presence of small-scale dynamo. We find that in some parameter regimes, the dynamo shows hysteresis behavior, I.e., two dynamo solutions are possible depending on the initial parameters used. A decaying solution was observed when
the dynamo was started with a weak field and an oscillatory strong solution was seen if the dynamo was initialized with a strong field. Thus, the hysteresis of the large-scale dynamo is also observed in presence of the small-scale dynamo,
however, the regime of hysteresis is quite narrow for the case without the small-scale dynamo.
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« In dynamo hysteresis, two dynamo solutions are possible depending on the initial parameters used. 0.0 e s
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In the Sun, both global and local dynamos are expected to operate at the Etc...
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Motivation [
* Presence of small-scale dynamo Is said to affect the presence of large-scale dynamo. @)
(Karak & Brandenburg 2016, Bhat et. al. 2016) 0.4 - *

* What is the hysteresis behavior of the large-scale dynamo in the presence of the small-scale dynamo.
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aQ dynamo model set up using PENCIL CODE (See, e.g. Kapyla & Brandenburg 2009) - . : . d
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Figure 5: (a) : Variation of the temporal average of the mean toroidal field when from simulations started with a weak field.
- Momentum Equation:—; E =f—SUS — ¢2V In p+ [J x B+ V-(@2pS)], D/Dt =9/t + (U + U®) (red) and from simulations started with strong field of previous simulation (blue).

(b) Butterfly diagrams of B, as functions of z and t, for the subcritical dynamos, ¢ =0.15 and (c) ¢ = 0.12 when the
v = advective time derivative,u® = (0, sx, 0)= imposed uniform large-scale shear flow & S = constant shear rate  simulation was started with a strong field of previous simulation.
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* In momentum equation, f = forcing function = helical and random in time (Haugen et. al. 2004), b) 2
f(x, 1) = Re{N fi,explik(t) - x + ip(1)]}
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Conclusions

* With the help of PENCIL CODE, we have set up an «€2 dynamo simulation which excites both

Dynamo Transition large-scale and small-scale dynamo.

() 8T8 020 &0 g . (b) * In this dynamo, fluid is helically forced and large-scale linear shear is imposed.
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Y . * We observed the dynamo transition and hysteresis of the large-scale dynamo in the presence of
0.4 - R6 -7 ' \
¢ * . the small-scale dynamo.
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